Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 60(14): 4811-4819, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743939

RESUMO

Purpose: Cone rod dystrophy (CRD) is a group of inherited retinopathies characterized by the loss of cone and rod photoreceptor cells, which results in poor vision. This study aims to clinically and genetically characterize the segregating CRD phenotype in two large, consanguineous Pakistani families. Methods: Funduscopy, optical coherence tomography (OCT), electroretinography (ERG), color vision, and visual acuity assessments were performed to evaluate the retinal structure and function of the affected individuals. Exome sequencing was performed to identify the genetic cause of CRD. Furthermore, the mutation's effect was evaluated using purified, bacterially expressed ADP-ribosylation factor-like protein 3 (ARL3) and mammalian cells. Results: Fundus photography and OCT imaging demonstrated features that were consistent with CRD, including bull's eye macular lesions, macular atrophy, and central photoreceptor thinning. ERG analysis demonstrated moderate to severe reduction primarily of photopic responses in all affected individuals, and scotopic responses show reduction in two affected individuals. The exome sequencing revealed a novel homozygous variant (c.296G>T) in ARL3, which is predicted to substitute an evolutionarily conserved arginine with isoleucine within the encoded protein GTP-binding domain (R99I). The functional studies on the bacterial and heterologous mammalian cells revealed that the arginine at position 99 is essential for the stability of ARL3. Conclusions: Our study uncovers an additional CRD gene and assigns the CRD phenotype to a variant of ARL3. The results imply that cargo transportation in photoreceptors as mediated by the ARL3 pathway is essential for cone and rod cell survival and vision in humans.


Assuntos
Fatores de Ribosilação do ADP/genética , Distrofias de Cones e Bastonetes/genética , Genes Recessivos , Mutação Puntual , Adolescente , Adulto , Animais , Células COS , Criança , Chlorocebus aethiops , Distrofias de Cones e Bastonetes/patologia , Consanguinidade , Eletrorretinografia , Feminino , Expressão Gênica , Células HeLa , Homozigoto , Humanos , Masculino , Oftalmoscopia , Linhagem , Fenótipo , Tomografia de Coerência Óptica , Acuidade Visual , Sequenciamento do Exoma , Adulto Jovem
2.
Hum Mol Genet ; 27(15): 2703-2711, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771303

RESUMO

Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an opportunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development.


Assuntos
Oftalmopatias/genética , Proteínas Serina-Treonina Quinases/genética , Transtornos da Visão/genética , Animais , Animais Geneticamente Modificados , Consanguinidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Anormalidades do Olho/genética , Feminino , Genes Recessivos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem , Transtornos da Visão/diagnóstico por imagem , Sequenciamento do Exoma
3.
Biochem Genet ; 55(5-6): 410-420, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29086887

RESUMO

CIB2 and GJB2 genes variants contribute significantly in familial cases of prelingual recessive hearing loss (HL). This study was aimed to determine the CIB2 and GJB2 variants and associated phenotype in 150 non-familial individuals with HL. After getting informed consent, 150 non-familial deaf patients were enrolled and blood samples were obtained for DNA extraction. Pure tone air conduction audiometry was performed. Coding exons of CIB2 and GJB2 genes were Sanger sequenced. A tetra primer ARMS assay was developed for recurrent CIB2 variant. Four bi-allelic GJB2 variants, c.71G>A p.(Trp24*), c.231G>A p.(Trp77*), c.235delC p.(Leu79Cysfs3*) and c.35delG p.(Gly11Leufs24*), were found in nine hearing impaired individuals. We also found four homozygotes and five carriers of c.380G>A p. (Arg127His) variant of controversial clinical significance. CIB2 sequencing revealed single recurrent variant c.272T>C p. (Phe91Ser) segregating with HL in ten individuals. Among our patients, c.71G>A (p.Trp24*) was the most common variant, accounted for 45% of GJB2 variants. Two known GJB2 variants, c.235delC p. (Leu79Cysfs3*) and c.310del14 p. (Lys105Argfs2*), are reported here for the first time in Pakistani population. Our data further support the benign nature of c.380G>A p. (Arg127His) variant. For CIB2, c.272T>C p. (Phe91Ser) is the second common cause of HL among our sporadic cases. Phenotypically, in our patients, individuals homozygous for GJB2 variants had profound HL, whereas CIB2 homozygotes had severe to profound prelingual HL. Our results suggest that GJB2 and CIB2 are common cause of HL in different Pakistani ethnicities.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Conexinas/genética , Surdez/genética , Doenças Genéticas Inatas/genética , Testes Genéticos , Mutação , Fenótipo , Conexina 26 , Surdez/etnologia , Feminino , Aconselhamento Genético , Humanos , Masculino , Paquistão/etnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...